The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.
The Behavior Of The Earth: Continental And Seafloor Mobility Ebook Rarl
The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths ( 2ff7e9595c
Kommentare